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Abstract

Functional Electrical Stimulation (FES) is a relatively new technology with much potential

in rehabilitation and mobility. One such application is its use to produce a pedaling motion

of the legs, as used by Johnny Beer-Timms, an athlete with paraplegia, who uses a recum-

bent bicycle adapted for FES cycling. Just as professional cyclists optimise every aspect of

their physical, mental and mechanical performance, Johnny wishes to push his performance

to its limit.

However, while much research has been focused on improving the FES technology itself, com-

paratively little has been put into the mechanical design of these bicycles. For example, the

pedals continue to be heavy and unwieldy, and without consideration of the needs of specific

users they are unable to provide the sufficient stabilization for efficient pedaling. Further-

more, Johnny lacks any system that can provide him with meaningful feedback, making it

difficult to quantify changes to his performance.

In this project, the team designed and manufactured a pedal that addresses these concerns,

while adhering to the regulations laid out by the Cybathlon organisers. The requirements

of the design were developed by close collaboration with the user on what data the pedals

should measure, how they were to be displayed, the issues he had with his original pedals

how he envisioned the pedal in general.

The final product adapts a snowboard binding and bicycle pedal to create an adjustable

base, with an aluminium calf support of the team’s own design and an ITB strap to secure

the le.g. The performance feedback system was composed of a microcontroller on each pedal

measuring force and cadence, which report this data to a central processor for display and

storage. However, it did not meet some of the objectives for physical stiffness and weight.

However, testing and evaluation provided valuable insights to the sources and possible solu-

tions to the issue. It is likely that given further resources and development time, the product

would be able to meet all requirements laid out.
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1 Introduction

1.1 Background

Johnny Beer-Timms is a competitive athlete and cyclist unlike most others - after incurring a

spinal injury during a trampoline practice in 2011, Johnny lost the entire mobility of his legs and

partial mobility of his arms and hands. He now cycles on a recumbent bicycle using Functional

Electrical Stimulation (FES), which passes electrical impulses to his leg muscles through two

patches placed on his thighs, stimulating a pedalling motion.

Johnny adjusts the frequency of the electrical pulses that are being sent but the challenge lies

in optimising his cycling speed while limiting the fatigue that can rapidly build up in his legs

without him feeling it.

Cybathlon is a unique championship hosted every four years by ETH Zurich during which people

with physical disabilities compete against each other by completing everyday tasks using state-

of-the-art technical assistance systems. In 2016, Johnny participated in the bicycle race and

brought back the silver medal. He intends to win the gold medal in the Cybathlon 2020, and

reached out to Imperial College London with some suggestions on how his performance can be

improved.

1.2 Aims

The aims of the project are as follows:

- To improve the ergonomics of his bike pedal, ensuring that it holds his leg in place securely;

- To provide an improved pedal base that allows for adjusting the position of where the

pedal spindle meets the pedal base;

- To install a feedback system that provides live and stored feedback for Johnny to evaluate

changes in his performance, and fine-tune his FES parameters and cycling techniques.

1.3 Objectives

It was decided early on that these objectives could be pursued in parallel. The project group

was therefore distributed into separate Mechanical and Electrical teams, with the Mechanical

team focusing on the redesign of the bike pedal, and the Electrical team working on the feedback

system and incorporation of sensors into the pedal. To further facilitate project management
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and division of labour, the product itself was further separated into several components, allowing

for performance objectives to each part to be defined.

For the mechanical team these were:

- The calf support that holds the cyclists upper leg in place, which needs to be strong and

rigid enough to prevent lateral straying of his legs.

- The straps that secure the upper leg to the calf support. These need to hold the leg

securely to the support while remaining comfortable and safe for extended use.

- The pedal base, including the adjustable spindle position, which is adjustable to allow

Johnny to find the best position for power transfer.

The electrical team dealt with the feedback system, which was broken down into:

- The circuit design and choice of sensors to measure force and cadence, integrated on the

pedal. A variety of performance metrics can be obtained from knowing the force and

cadence (pedal cycles per unit time).

- The transmission relay that streams data from these sensors to a central processor. The

data needs to be transmitted to a central unit to be displayed. The main design parameters

are where along the chain the data will be processed, and the transmission protocol to be

used.

- The central processing system which processes, stores, and displays the data from the sen-

sors. The graphical interface for live feedback and the data interface for stored information

(i.e. the file type and formatting, storage and transfer) will all need to be considered in

the programming of the operating system.

Both teams generally followed a similar process of research and design, manufacture and evalu-

ation.

Research and Design.

Possible methods, materials and media that could be used to achieve the objectives of the respec-

tive groups were investigated. The primary concerns for the Mechanical parts are their design,

choice of materials, and methods of manufacture. Design of the electrical components involved

the choice between different sensors, programming languages and data transmission protocols.
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Manufacture:

A prototype pedal for end-user testing was manufactured, i.e. for active use by Johnny. As

such, the prototype contained enough functionality for feedback and iteration, without having

to be a final version.

Evaluation:

The manufactured product was compared to product specification and objectives as well as

Johnnys feedback on how they meet his requirements.

Each of these steps will be discussed in more detail in subsequent sections.

2 Requirements definition

2.1 User requirements

Upon commencement of the project the team visited Johnnys residence in Aylesbury to better

understand his requirements. Johnny explained that he had been training up his physical fitness

and tuning FES parameters, but also wanted to optimise the performance of the bike.

The initial project brief was to design and build a longer crank for the bicycle, but this was

quickly discovered to be trivial as he had simply purchased one. The team identified a number

of areas for improvement based on discussion with Johnny and examination of the bicycle itself:

1. Johnny wanted to be able to adjust the parameters of the FES control box while cycling,

which was not possible as his hands were strapped to the handles;

2. He was hoping to reduce the overall weight of the bike;

3. He was unsatisfied with how his legs tended to stray laterally while pedaling at high speeds,

suggesting that either the straps that secured his leg to the calf support were not tight

enough, or that the support itself lacked rigidity;

4. The spindle connects to the pedal underneath the ball of the foot in Johnnys current pedal.

While this is beneficial for power transfer in traditional cyclists, the team believed that he

might be able to transfer more power through his heel.

5. In order to optimise the timing of the FES program and quantify improvements to his

performance, Johnny required some form of feedback.
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Johnny was pursuing the first point with Rick Berkelman, the designer and retailer of the recum-

bent bicycle that he uses. Since points two to five could be addressed by redesigning the pedal,

it was decided that the team would design an improved pedal with an integrated performance

feedback system.

Following background research (detailed in the following section) and further discussion with

Johnny, the team established a set of user requirements for the pedals:

- It must provide rigid axial support to his foot, preventing any power from being lost to

unnecessary movement in his lower leg and foot.

- It must bind his legs tightly enough to achieve the above while also being safe and com-

fortable for extended periods of use. This is paramount as Johnny has reduced sensation

in his legs and may not be able to sense any impingement, friction or chafing until they

lead to significant pain and injury.

- The position of the spindle relative to the foot should be adjustable to allow Johnny to

find the most suitable position.

- The pedal should have a reduced weight, and a profile that does not cause the bike to

exceed maximum dimensions allowed by Cybathlon.

The feedback system should provide Johnny with access to the following:

- The cadence (pedal revolutions per minute), power delivered to pedal, and power phase.

The power phase is defined as the position along the pedaling cycle where maximum power

is delivered.

- The aforementioned data delivered while cycling, clear and legible on a monitor attached

to the handle bars.

- The aforementioned data, also stored for comparison of long-term changes in performance.

- A user interface to initiate and terminate data recording and display, and to systematically

save session data for his access.

It is also worth noting that Johnny is assisted by a carer who straps him in and out of the

bike, and is therefore always present when he trains. Regardless, for Johnny’s convenience and

self-reliance, as much of the system should be accessible to him without assistance as possible.
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2.2 Background research

2.2.1 Cybathlon regulations

It was vital first to establish what modifications to the bicycle were permitted under Cybathlon

regulations. The rule book for Cybathlon 2020 [Zurich (2019)] specifies the general rules, race

task, and regulations for all events. A few clauses relevant to the design were identified, namely:

GR-9 It is allowed to use commercially available devices. Competitors are permitted to modify

them to optimise function. Alternatively, prototypes and research devices are also eligible.

This clause simply confirms that modifications to the bike are permitted. This is generally

known, as many devices used in Cybathlon are themselves prototypes.

GR-13 Communication (wired or wireless) between the device and any third-party stationary site

is not allowed, i.e. remote connection to control the device by any person other than the

pilot is forbidden, except for emergency stop and data monitoring.

This clause confirms that on-board data collection can be relayed to a device off the the

bike, even during the race. This option was considered but eventually not used.

3.2.2 Technology discusses regulations pertaining directly to FES bicycles, and includes the

following sub-clauses of interest:

- Only passive cycling devices without actuation are allowed. The only actuation is provided

through the FES-stimulated legs of the pilot.

This clause clearly states that actuation is disallowed in the design of the bike, and by

extension the pedals. Any reduction of stray movement would therefore have to be achieved

purely by means of rigidity rather than active damping.

- The maximum width of the cycling device is limited to 900 mm to enable proper use on

the ramps and in the lanes of the race track. The cycling device must fit on the start ramp

behind the start gate (total length 2000 mm)

This specifies the maximum dimensions of the bike, which limits how much the pedals can

protrude from the bike.

Overall, the regulations of Cybathlon were not found to be particularly restrictive. The main

restrictions of note were to the final size of the bicycle, and the prohibition of actuation. To

ensure unambiguous compliance, however, the team decided that the electrical components

should be removable to affirm that the pedals did not contain any active power source.
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2.2.2 Currently available products

The pedals that Johnny was using were manufactured by Hase, a company specializing in adapt-

able bicycles. Hase has updated the design of their pedals to include a highly adjustable foot-

plate, quick release strap, and redesigned calf support.

However, the position of the axle connecting to the spindle remained at the ball of the foot, and

is not adjustable. This, in addition to the fact that the Hase pedal is designed for a wide range

of disabilities and bicycle configurations, affirmed the team’s decision that designing a pedal

specifically for Johnny remained worthwhile.

Furthermore, the team was unable to find evidence of a sensor suite designed specifically for

recumbent bicycles, with the vast majority of commercial cycling computers and performance

sensors designed for typical cyclists.

It was therefore agreed that despite the existence of both cycling monitors and high-performance

recumbent bike pedals, the group’s objective to develop and build a combination of the two would

still be novel.

2.2.3 Relevant biomechanics

One of the objectives of the pedal design is to provide an adjustable position for the pedal axle,

in order to allow Johnny to find the optimal position for power transfer. A typical cyclist’s op-

timal axle position is typically accepted to be at the front of the foot [Fonda & Sarabon (2010)],

which is presumably why Johnny’s current pedals are positioned this way.

However, Johnny’s FES bicycle is two degrees removed from a conventional bicycle; firstly due

to its configuration as a recumbent bicycle, and secondly due to his different muscle function.

The team’s intuition was that these differences may mean that the optimal spindle position

relative to the foot is different from that used conventionally. Research into literature on the

biomechanics of cycling and FES was therefore needed to validate this intuition and the provision

of an adjustable axle position.

Difference in configuration – Telli et al. (2017) compares various biomechanical properties

(such as body centre of mass, muscle tension and length, joint angles) between recumbent and

upright cycling for typical cyclists. They conclude that only small differences are appreciable
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between the two postures, with small benefits to aerodynamics and external work applied in the

case of recumbent bicycles. In other words, the different posture of recumbent cycling appears

not to have a major effect on the biomechanics in terms of how power is applied and transferred,

and therefore conclusions drawn for upright cycling are applicable to recumbent cycling.

Muscle activity due to FE stimulation – Rebecca Martin et al. (2012) discuss the major

differences between FES-initiated muscle contraction and physiological contraction. Most im-

portantly, motor unit recruitment is based on size and proximity to the electrode, progressing

from large to small muscles - an inverse of voluntary contractions.

Figure 1: Muscle engagement during pedal cycle. [Physiopedia (2019)]

Figure 1 outlines the muscle engagement in a typical pedal cycle. The key implication of

Johnny’s cycling motion being FES stimulated is that he does not have electrodes placed at his

lower leg, and therefore the ankle plantar flexors and ankle dorsiflexors (C & D in Fig.??) are

not recruited when he pedals.

The ankle plantar flexor exerts a downward force and is responsible for stabilising the the ankle

in the downward stroke of the power phase, while the dorsal flexor stabilises the foot while in

the upward motion of the recovery phase. Lacking command of these two muscles, Johnny can
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neither control the flexion of his ankles nor produce additional power from his calves.

The team hypothesises that this neutralises the benefits traditionally provided by positioning

the spindle beneath the forefoot, since he can neither balance nor stabilize the foot in the man-

ner required to provide leverage to apply force through the ball of the foot to the pedal spindle.

The ankle is stabilized instead via seizure by the pedal assembly, but this is likely to affect the

balance point, moving it closer to the heel.

While it is beyond the scope of this design project to provide a full biomechanical analysis and

recommend the ideal balance point, the above analysis serves as proof of concept that it will be

worthwhile for the user to experiment with various positions to find the point of balance suited

to them. The feedback system further facilitates this by allowing him to quantify changes in

performance.

2.2.4 Force sensors

There are three main technologies available for force sensing - load cells, strain gauges, and

force-sensitive resistors. The principle of operation, benefits and drawbacks of each are

outlined below:

Strain gauges are lengths of resistive wire bonded to the object of interest. When force is

applied to the object, the gauge experiences a change in length (i.e. a strain) and the accompa-

nying change of resistance is measured. They can be accurate if well-implemented, and their size

makes them an appealing option. However, strain gauges must be well bonded to the material to

be effective, and are prone to breaking if exposed and improperly handled. They were therefore

considered unsuitable for use in the prototype, as robustness of the sensors was desired.

Load cells are sensors which transduce force to an electric signal using various means, such as

piezoelectric and hydraulic effects. Several load cells actually use strain gauges for transduction,

circumventing the issues described above by enclosing the gauge within the cell. They are

also convenient to use in that the strain gauge is pre-connected to a differential bridge circuit.

However, their form factor is unsuitable to be integrated onto the pedal, which requires a flat,

thin, wide surface of measurement.

Force-sensitive resistors (henceforth FSRs) are made of conductive polymer which decreases

in resistance when a force is applied to it. FSRs are reasonably robust but also come in thin
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films, making them highly suited for the needs of the design. However, the resistance is known

to be nonlinear with respect to force applied.

Table 1: Comparison of force-sensing technologies. o denotes suitability, x denotes unsuitability,
and – denotes neutral suitability (not ideal, but can be designed around).

Technology Robustness Form factor Accuracy

Strain gauge x o –

Load cells o x o

Force-sensitive resistors o o –

From the comparison in Table 1, it is evident that FSRs are the most suitable for the require-

ments of the design, and were selected for use in the final design.

2.2.5 Cadence sensing

To measure cadence, there are several different options available, including a Hall effect sensor

or a gyroscope/accelerometer-based system. Ultimately, the team decided on the bipolar Hall

effect sensor because it involves a less complicated and more efficient method with regards to

coding and setting up. This was particularly important due to the time constraints imposed by

the project. The Hall effect itself is discussed in Appendix F.

2.2.6 Wireless transmission

Any form of data transmission from the pedals would have to be wireless due to the continuous

rotational motion of the pedals. For this, several methods were considered during the design

process: Wi-Fi, Bluetooth and ANT+. The final decision was to use Bluetooth Low Energy

(BLE) because the Raspberry Pi and Bluno Nano have inbuilt hardware, which allow for Blue-

tooth connectivity. BLE is energy efficient and has a lower latency than the other methods

during connection and data transmission.

2.3 Technical requirements

The technical requirements the product should fulfill are outlined below. M and D indicate

mandatory and desired outcomes respectively.
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Table 2: Table summarising the technical requirements of the product.

No. Requirement Priority

1 Functionality and Performance

1.1 Pedal must be able to transfer a force of 600N from the underside of the foot

to the end of the spindle without flexing more than 2 degrees in all directions.

In practice must withstand 1200N (using a safety factor of 2).

M

1.2 Calf support must not allow the lower leg to move laterally more than 5mm

in all transverse directions under a 50N load.

M

1.3 The bindings must secure the foot to the pedal surface tightly, so that there

is no more than 3mm of movement of the foot in relation to the pedal in all

directions.

M

2 Size and Weight

2.1 Electronic box embedded in the pedals must be no more than 10% of the total

mass on the pedals. Small monitor must be no more than 0.3kg.

D

2.2 Each pedal must be lighter than the existing pedal at 1.2 kg. D

2.3 The dimensions of the main pedal assembly should conform to the following:

2.3.1 Area of base of pedal must fit UK male size 11-12 shoe (i.e. 250mm length

and width ranging from 85mm - 120m).

M

2.3.2 To comply with the starting gate lane width at Cybathlon, the pedals must

not cause the overall width of the bike to exceed 900mm in width and 2000mm

in length.

M

2.3.3 The calf support should attach to the upper calf 50-60mm below the knee. M

2.3.4 Calf support to be 100mm to 150mm long and have a circumference of 320mm

to firmly hold the calf and knees in place.

D

2.3.5 Any additional straps used to be at least 40mm wide to securely hold the leg

in place during use.

D

2.3.6 Bolt connecting pedal to the bike spindle must be an M12 bolt size. D

2.4 The pedal feedback sensors must be sized as to securely fit the pedals, that

is, no more than 120mm wide and no more than 200mm long. These sensors

must be as thin as possible, preferably less than 10mm. Small monitor to

display real time data must be smaller than 100mm x 200mm.

M

3 Usability & ergonomics
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Table 2: Table summarising the technical requirements of the product.

No. Requirement Priority

3.1 Water resistance - electronic systems must not be affected by light rain, and

mechanical components should not rust easily from occasionally cleaning or

light rain.

D

3.2 As Cybathlon and various other competitions take place overseas, the pedals

should be detachable or otherwise easily transported.

D

4 Safety

4.1 The final product parts must not interfere with the braking system so that

the user will be able to slow down and stop as before.

M

4.2 Electrical components (such as sensors) must be insulated so as to not come

into contact with water.

M

4.3 The pedals should not contain any sharp edges upon which the user could

potentially hurt himself.

M

5 Life, reliability and Maintenance

5.1 Must at least last until Cybathlon 2020 and withstand at least 365 hours of

sustained use (based on 1 hour of training every 2 days).

M

5.2 The materials chosen need a high fatigue strength, about 130 MPa. M

5.3 Parts can be attached/detached separately and can be attached using screws

or bolts. Parts must also be easily accessible in case maintenance is required.

D
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3 Final design

The final design of the pedal system consists of:

- An aluminium plate that mounts the assembly to the pedal spindle, forming the base,

- Snowboard bindings for the foot to strap in, mounted onto the aluminum plate,

- An aluminum calf support mounted onto the heel of the snowboard binding,

- An ITB strap to securely fasten the leg into place,

- A Bluno Nano on each pedal which communicates wirelessly with a Raspberry Pi display.

Figure 2: The pedal presented to Johnny on demonstration day.

3.1 Hardware

The mechanical side of the pedal design begins with a pair of MKS Espirit alloy pedals.

These were chosen because they have M5 tapped holes to which the rest of the pedal can be

attached. The pedal axle itself is complicated to design, and doing so well would not be novel -

hence the use of an existing component.

A highly adjustable aluminium base plate was then created and mounted on top of the MKS

pedal by two 74 mm long aluminium angle brackets. Two rows of 9 holes were drilled onto

a 3mm thick, 260 mm by 71 mm plate, which allow for the adjustability that allows Johnny

to change his foot position and experiment to find the optimum arrangement for peak cycling
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performance. Figure 3b depicts the resulting arrangement.

The underside of this plate also provides an attachment point for small laser cut boxes that

contain the microcontrollers and cadence measuring equipment. These boxes each contain a

small LED on the side to indicate that the electrical system is working.

(a) The MKS Espirit alloy pedals. (b) A SolidWorks rendering of the aluminum base.

Figure 3: The MKS pedals and a SolidWorks rendering demonstrating the base plate assembly.

On top of the aluminium base plate, a snowboard binding was used as the mechanism to keep

Johnnys foot secured in place. This was selected for its comfort and ease of use when fastening

or unfastening, but also for its high degree of adjustability. The toe and ankle bindings firmly

secure the user’s feet to the binding base, while the padded straps minimise the risk of pressure

sores developing. Salomon Rhythm bindings were chosen in particular because they have a toe

strap which wraps around the front of the foot, rather than on top of the toes, meaning that they

would be more comfortable for use with shoes, as the user would not be wearing snowboard boots.

The binding is attached to the base plate via an indexable disc, which allows rotation of the

foot if necessary, to keep the leg in line. The slotted holes allow lateral movement of the binding

with respect to the pedal base to maintain clearance between the binding and pedal spindle.

This adjustability is illustrated in Figure 4b. This further adjustability means that Johnny is

really able to find the best configuration that works for him.
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(a) The Salomon Rhythm bindings. (b) The indexable disc.

Figure 4: The snowboard bindings used, and the indexing disc allowing for foot angle adjustment.

The highback of the snowboard binding was replaced by a calf support of the team’s design

that extends upwards behind the calf to support the lower leg. This part was cut from an alu-

minium sheet and then rolled into a semi-circular shape of similar radius to Johnnys calf; room

to grow was allowed. Foam padding was added at the top of the calf support for comfort.

Originally designed for iliotibial band (ITB) injuries, a Mueller ITB strap was used to secure

the leg below the knee, as shown in Figure 5c, at the top of the calf support. This was threaded

through slots made in the calf support visible in Figures 5a & 5b easily. The Velcro binding

allows adjustment and good mechanical strength, resisting both normal and shear forces. The

plastic buckle provides additional mechanical strength by halving the force. A nylon strap was

sewn onto the ITB strap to provide more strength and minimise flexibility so that Johnny stays

completely secure.

(a) Front view. (b) Rear view. (c) Proposed placement of strap.

Figure 5: The manufactured calf support installed on the snowboard bindings, with slot for ITB
strap circled.
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3.2 Software and electronics

The aim of the electrical components integrated with the bike pedal is to provide the user with

a live and post-training performance feedback, to keep track of progress and determine if any

other adjustments (i.e. crank length, wheel size), made on the bicycle improve its performance.

Two data collecting devices (one on each pedal) feed the main unit where the processing and

the presentation of the data takes place. The main unit has a user-friendly touch screen and

can be mounted either on the handlebars, or on a side stand. All the data is exported as a

spreadsheet to a flash memory drive at the end of the session for the user to get a more detailed

post training analysis on his personal computer.

Figure 6 provides a visual overview of this system, while the full circuit diagram is available in

Appendix H.
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Figure 6: Flowchart of the input, processing and output of data through the system

3.2.1 Sensors

In this section, the design of the sensors built in to the pedals is discussed.
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Bluno Nano

Each pedal feeds the processing unit with force measurements, but only one of them also pro-

vides cadence. Due to the continuous rotational motion of the pedals the connection needs to

be wireless. The most energy efficient way to create a small distance fast data transferring

connection of two peripheral devices on a parental device was by Bluetooth Low Energy (BLE).

Therefore, the selected micro controller was the Bluno Nano by DFrobot (henceforth sim-

ply Bluno Nano). Its small size (53 x 19 x 12 mm), the integrated BLE module and the 30

hours of running time out of a 9V battery made it well suited to the requirements. Programs

for these controllers are written in the Arduino programming language - hence any reference

subsequent reference to Arduino refers to the programming language, while Bluno Nano refers

to the physical device.

Force-sensitive resistor

Each FSR is connected in series with a resistor as shown in Figure 7, forming a potential

divider. The Blunos measure the voltage drop across the fixed resistor, to calculate the voltage

across the FSR. The conductance of the FSR is calculated, and the corresponding force is found.

The 70kΩ value was selected as this allows the measured voltage to range from 0.4 V to 4.1 V for

forces up 400 N. Since there are two FSRs on the pedal, the FSRs are together able to measure

up to 800 N.

FSR
70 kΩ

+5V

analog data pin

GND

bluno nano

Figure 7: Simplified circuit diagram depicting FSR sensor connection

Two FSRs are placed on each pedal, connected to the same Bluno Nano. They are situated at

the heel and the metatarsus - the two points where pressure from the feet is applied. In order to

improve the contact area and force concentration, the FSRs are placed between flat plates that

fit the shape of the binding area on one side, and the shape of the FSR on the other. These

’pucks’ were then laminated onto the ski binding. In addition to increasing the accuracy and

sensitivity of the FSRs, they also protect the sensor from shear forces mostly occurring when

the user gets his feet on to and off of the pedal.
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Figure 8: The placement of the FSRs on the pedal, beneath pucks 3D-printed in white.

Cadence

Cadence is measured using a bipolar Hall effect sensor connected to the Bluno Nano. The Hall

effect sensor itself is mounted under the pedal, and a 10kg-pull magnet is mounted to the frame

of the bike using Velcro.

Housing

A detachable transparent housing containing the circuitry, the 9V battery and the micro con-

troller was constructed by laser cutting its side panels out of acrylic Panel. In order to reduce

weight and ensure compliance with regulations, the housing was designed to be easily detached

from the pedal by removal of two screws on its underside. The power button, alongside an LED

to indicate that the device is on, are located on the outer side of the housing.

3.2.2 Software

Microcontroller-level data processing

Force measurements are taken at a fixed rate of 10 per second. Knowing the period of a single

pedaling cycle from the cadence, and approximating the angular velocity to be constant, the

position at which each force measurement was taken can be approximated.

Since the Bluno Nanos communicate with the Raspberry Pi over a Bluetooth serial channel, the

cadence and force data is combined in a string. They must be separated by a buffer character

so that the Raspberry Pi can differentiate the two. Since only the right pedal measures cadence,

however, a time delay was introduced in the code of the left one so that the serial communication

of the two pedals to the Pi would be synchronized.
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Bluetooth communication

The use of BLE on the Raspberry Pi was facilitated using the bluepy module in Python 3. This

module allows the main Python script to initiate a connection to both Bluno Nanos and receive

the transmitted data. This was one of the crucial stepping stones to unifying the entire feedback

system. The Bluno Nanos were then formatted so that the corresponding serial monitor would

be transmitted via Bluetooth.

Data handling in the Raspberry Pi

The Raspberry Pi runs a Python script written to process, store, and display the data. Data

from the left and right Bluno Nanos were received simultaneously via two parallelized processes

defined within the Python script, allowing for the seamless transmission of data without any lost

data due to clashes (this is also why the delay in the left Bluno Nano was necessary in sending

data to the Raspberry Pi).

The Raspberry Pi sorts the data using buffer characters in the serial string. Once sorted, the

data was prepared to be displayed and recorded on the Excel workbook. To format force read-

ings into power phase readings, the time of each force reading was correlated with the period of

the pedaling cycle, which was known from the cadence data.

Once this calculation was made, the angle of the pedal when the force reading was taken could

be estimated from the position of the magnet on the bicycle frame. The force readings from the

left pedal were assumed to be lagging by 180◦, i.e. half a cycle compared to readings from the

right pedal.

User interface and data storage

A user interface was created as part of the main python code using the Kivy module. This

module allows for clean and user-friendly design as well as simple animations, making it ideal

for the interface. Once started, the Raspberry Pi boots into its operating system and runs the

main Python code, which displays the start screen in Figure 9a.

Upon pressing the start button, the Raspberry Pi connects to the Bluno Nanos and receives the

data from the pedals. This data was processed as discussed in the above section, and was then

displayed as in Figure 9b.
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(a) The start screen of the feedback system. (b) The live feedback during a session.

Figure 9: The two main screens shown to the user.

When the ride is complete, all the recorded data is saved by pressing the quit button. The user

interface then returns to the start screen. Recorded data is saved in an Excel workbook and to

a USB drive connected to the Raspberry Pi. This was facilitated using the Xlsxwriter module

in Python 3. This module allows for the main Python script to record all the data received onto

an Excel spreadsheet, and create graphs from this data automatically. Each workbook contains

2 spreadsheets, one for the cadence data and the other for the power phase data. Figure 10 is

an example of such a spreadsheet.

Figure 10: A sample of the Excel sheet produced by the Raspberry Pi using Xlsxwriter.
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4 Testing and evaluation

The feedback system and physical pedal were evaluated separately to see if they met the technical

requirements.

4.1 Feedback system

During the development process, the wireless communication system was continuously tested.

Each part of the system was tested both individually and also in conjunction with the already

existing parts as they were developed.

The parts of the system that were individually tested were:

1. The Bluno Nanos ability to send data via Bluetooth.

2. The ability to form a Bluetooth connection between individual Bluno Nanos and the Pi.

3. The ability to simultaneously connect both Bluno Nanos to the Raspberry Pi.

4. The Raspberry Pi’s ability to receive data via Bluetooth.

The code written to test these and provide relevant feedback can be found in Appendix I and J.

During the development process, it was not uncommon for parts of the wireless communication

system to fail these tests, but each failure provided valuable feedback that allowed for further

improvement. The final product passed each of these tests, and the wireless communication

system was in working order when the user tested the final product.

4.2 Sensors

4.2.1 Force-sensitive resistors

The accuracy of the force sensor was tested by applying a series of known forces, and compar-

ing the voltage reading across the known resistor from both a Multimeter, and the serial port

reading of the Bluno Nano. The force application was done with the aid of the column force

tester that could hold a constant force.

The multimeter and Bluno Nano’s voltage readings were plotted against each other, resulting

in Figure 11.
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Figure 11: The graph of Bluno Nano voltage against multimeter voltage measurement

Comparing the data, represented by the blue line, to the dotted y = x line suggests that the

Bluno Nano readings are very accurate, i.e. they follow the multimeter readings closely.

4.2.2 Cadence

To test the maximum distance at which the Hall effect circuit can be consistently activated, a

magnet suspended by an adjustable height pendulum was set up above the Hall effect sensor.

As the pendulum swings, the magnets passed above the Hall effect sensor with a constant period

of half a second.

The distance between the sensor and the magnet was measured and then the pendulum was set to

oscillate freely. Activations were observed as spikes on the serial plotter in the Arduino software.

Spikes were only observed at distances closer than 1.0 cm, but the sensor was triggered incon-

sistently despite the pendulum oscillating freely with a constant period. Consistent activation

of the Hall effect sensor was only observed at 0.5 cm.
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Figure 12: Capture from the serial plotter of distances of 1.0 cm and 0.5 cm. Note the differing
spike patterns, despite identical pendulum motion.

4.3 Mechanical testing

4.3.1 Finite element analysis

Since holes were to be drilled into the calf support, it was analysed in SolidWorks using finite

element analysis (FEA) to ensure it was not compromised by stress concentrations in the alu-

minium part. With the part initially being modeled in SolidWorks, FEA was easily performed

on it using the following procedure:

1. Anchors were placed at the fixing holes in the bottom of the part.

2. A 50N load was placed at the top edge of the part, firstly in the lateral direction (side to

side), then longitudinal (front to back).

3. The simulation was then meshed and run.

(a) Heatmap of stress. (b) Heatmap of displacement.

Figure 13: FEA of stress and displacement under 50 N lateral force.
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The lateral simulation shows a maximum stress of about 12MPa (Figure 13a), and a max dis-

placement of 0.5mm (Figure 13b). This small deflection reflects the large thickness of material

of 3mm, and large Youngs Modulus of the material of about 69GPa [ASM (1998)].

(a) Heatmap of stress. (b) Heatmap of displacement.

Figure 14: FEA of stress and displacement under 50 N longitudinal force.

The longitudinal simulation shows a maximum stress of about 10MPa (Figure 14a) in the main

body of the part and a maximum displacement of 0.7mm (Figure 14b), again reflective of the

material thickness and elasticity.

4.3.2 Lateral force-displacement testing

The lateral stiffness requirement (Table 2, 1.2) is that the pedal should not allow more than

5mm of lateral movement of the lower leg in relation to the pedal under a 50N load. The

procedure to test this was as follows:

1. A simple 45x45mm RexrothTM fixture was made to support the pedal.

2. The pedal was mounted in a Mecmesin force tester as in Figure 15. This configuration

results in maximum lateral bending moment that could be applied by the user. A 0 1000N

force sensor was used to give a 0.7N resolution.

3. A program was run that records the force needed to reach a 15mm displacement, with the

force sensor just touching top of the calf support.

4. The results were exported to MATLAB for analysis, where the displacement was plotted

against transverse force.
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Figure 15: The setup used for the bend test with the Mecmesin force tester.
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Figure 16: The results of the bending test - force (N) against displacement (mm).

Figure 16 demonstrates that at the target load of 50N, the pedal displacement is 12.2mm,

much larger than the desired 5mm maximum deflection. Whilst performing the test, however, it

was observed was that much of the deflection was coming from torsional strain over the length of

the snowboard binding, and not a moment over the calf support, which remained quite straight.

This was verified by holding a straight rule along its length to gauge deflection.
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4.4 Qualitative prototype review

During this phase of testing, the prototype pedals were fitted to the users assistive bicycle and

were tested whilst on a rolling road. The ensuing feedback is a combination of the user’s response

to a questionnaire after testing (in quotation marks), and the team’s own observations.

Pedal installation was smooth; the pedals screwed into the bikes cranks very easily. There

were no fitment or clearance issues between the bike and the pedals.

The calf strap material was “too stretchy”, and so did not prevent lateral deflection of the

legs. The area the Velcro attached to was too small and kept coming undone. The user felt that

ratchet type straps (as with the ankle binding) might be more suitable.

The aluminium calf support “was lightweight and looked grea”, but did not restrict the

movement of the lower leg enough, partly due of the stretch in the calf strap. The user reported

feeling a “[slight lateral] mismatch prevent[ing] any long-term use.“ This was likely a result of

the manufacturing method used.

The attachment of the calf support to the binding “was very secure, but some adjusta-

bility in the angle between calf support and binding would have been good.”

Snowboard binding strapping – The user found that “everything with regards to the snow-

board bindings worked fine and the strapping was very secure”.

The adjustability of the snowboard binding in relation to the pedal axle – “The

swivel action function built into the snowboard binding was useful and helped realign the ro-

tational positioning of the foot. The adjustment of the pedal forwards and backwards was also

very useful” The team noted it could have be further improved if the baseplate could be loosed

and slid along, rather than having to be fully taken off the pedal for every adjustment.

Conclusion – “In my opinion, the cycling motion was smoother, although the calf support’s

[slight lateral] mismatch prevented any long-term use. The overall concept of the design was

good, but would have been better if the calf support did indeed support the calf better.”

4.5 Evaluation matrix

An evaluation matrix was created that compares the requirements outlined in Table 2 to the

results that were obtained. High-priority outcomes not achieved are highlighted in red.
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Table 3: Evaluation matrix comparing the technical requirements to the outcome of testing.

No. Requirement Test results Achieved?

1 Functionality and Performance

1.1 Pedal must be able to transfer a force of 600N

spindle without flexing more than 2 degrees in

all directions (1200N with a safety factor of 2).

Not tested specifically,

though SolidWorks FEA

showed overly adequate

safety factor.

Yes

1.2 Calf support must not allow the lower leg to

move laterally more than 5mm in all transverse

directions under a 50N load.

Force testing indicated deflec-

tion of 12.2 mm under 50N

load, corroborated by user.

No

1.3 The bindings must secure the foot to the pedal

surface tightly, so that there is no more than

3mm of movement of the foot in relation to the

pedal in all directions.

Not tested specifically, though

bindings were reported to be

firm but comfortable.

Yes

2 Size and Weight

2.1 Electronic box embedded in the pedals must be

no more than 10% of the total mass on the ped-

als. Small monitor must be no more than 0.3kg.

The electronic box weighs 155

g. The Raspberry Pi screen

and case weighed 241 g in to-

tal.

Yes

2.2 Each pedal must be lighter than the existing

pedal at 1.2 kg.

Each pedal weighs 1.618 kg. No

2.3 The dimensions of the main pedal assembly

should conform to 2.3.1 - 2.3.6 in Table 2

The pedals and bicycle were

measured during user tests

and fit all the requirements.

Yes

2.4 The pedal feedback sensors must be sized as to

securely fit the pedals, that is, no more than

120mm wide and no more than 200mm long.

These sensors must be as thin as possible, prefer-

ably less than 10mm. Small monitor to display

real time data must be smaller than 100mm x

200mm.

The FSRs and puck assembly

is 5mm thick. The monitor

has dimensions of 178mm x

229 mm but could be comfort-

ably mounted on to the han-

dlebars.

No

3 Usability & ergonomics
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Table 3: Evaluation matrix comparing the technical requirements to the outcome of testing.

No. Requirement Test results Achieved?

3.1 Water resistance - electronic systems must not

be affected by light rain, and mechanical com-

ponents should not rust easily from occasionally

cleaning or light rain.

The box that houses the elec-

tronics was not manufactured

to be waterproof. Endurance

to rusting will only be known

with long-term use.

No

3.2 As Cybathlon and various other competitions

take place overseas, the pedals should be detach-

able or otherwise easily transported.

The pedals were success-

fully attached/detached sev-

eral times to the bike

Yes

4 Safety

4.1 The final product parts must not interfere with

the braking system so that the user will be able

to slow down and stop as before.

There remained large clear-

ance between the brakes to

the pedals when pedals were

fitted during user tests.

4.2 Electrical components (such as sensors) must be

insulated so as to not come into contact with

water.

The FSRs were laminated

onto the pedal and were thus

waterproof.

Yes

4.3 The pedals should not contain any sharp edges

upon which the user could potentially hurt him-

self.

Any sharp edges were filed

down and neoprene was used

to line the aluminium calf sup-

port

Yes

5 Life, reliability and Maintenance

5.1 Must at least last until Cybathlon 2020 and

withstand at least 365 hours of sustained use

(based on 1 hour of training every 2 days).

Requires long-term testing Unknown

5.2 The materials chosen need a high fatigue

strength, about 130 MPa.

Requires long-term testing Unknown

5.3 Parts can be attached/detached separately and

can be attached using screws or bolts. Parts

must also be easily accessible in case mainte-

nance is required.

All parts are fixed using

screws and bolts and have

been tested to be easily acces-

sible for the users carer

Yes
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5 Discussion

From the evaluation matrix, it is clear that the pedals meet the majority of the requirements,

with a few exceptions. However, testing and evaluation have given rise to a number of recom-

mendations as to how these can be remedied, and other functionality that could benefit the

user:

Reducing lateral knee movement further – In tests with the user, it was found that the

current strapping still allows too much lateral knee movement. This can be reduced in two ways:

- The straps need to be more rigid and have a larger contact area to securely fasten the calf.

- The calf support could encircle the leg more completely. However, it should be borne in

mind that the users calf still needs to be inserted into the support, so the calf support

cannot enclose too much.

Increasing the rigidity of the pedal assembly – From the results Section 4.3.2 it is

clear that the pedal assembly is not as rigid as required. However, this appears to to be mostly

due to a lack of torsional rigidity of the snowboard binding, rather than flexibility in the calf

support. This is supported by the results of the FEA, particularly Figure 13b. This design

flaw can be overcome if the calf support was directly connected to the baseplate instead of the

snowboard binding, so that any force placed on the calf support is not transmitted through the

snowboard binding.

Reducing the weight of the pedal – Currently, the entire pedal weighs 1618 g, despite the

holes which were introduced in the calf support to reduce the weight. The calf support, or even

the entire support and base, could be made from carbon fibre, which would make it significantly

lighter without compromising on stiffness.

Even if carbon fibre cannot be used, the FEA in Section 4.3.1 suggests that the calf support

well exceeds the current strength and rigidity requirements. Therefore, the calf support could

be made thinner, without compromising on an adequate safety factor.

Improving the ergonomics of the calf support – The calf support is lined with a thick

layer of neoprene that is glued on. While more comfortable than raw aluminium, the user found

it to not be very breathable. A soft foam that is detachable, washable and breathable would be

preferred. This could also be contoured for an even better fit. The design of night splints could
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be adapted for further improvements - they are fitted on the same parts of the calf and foot,

and provide a simple solution to issues frequently associated with bracing options.

Figure 17: Two night splint designs that could improve comfort of the calf support. [ssur UK
(2019)]

Comparing previous force measurements more easily – While the user has access to

previous data of various sessions, he still needs to compare them himself to see if there has been

improvement to his performance over time. It would be helpful if the Raspberry Pi made a

graph displaying the performance over time, such as average force or cadence. This would make

it much easier to Johnny to visualise trends and greatly improves the user experience.

Use multiple and stronger magnets to improve cadence measurements – Using a

stronger magnet allows more distance between the bike frame and the pedal, ensuring the

cadence sensor will be functional even if the user experiments with different crank lengths.

Furthermore, in the current design it is assumed that the angular velocity of each pedal stroke

is uniform. This is not necessarily true, and having more magnets along the circular travel of

the pedal gives a more accurate pedal position. This would improve the accuracy of the cadence

measurement because the average of the two recordings could be taken.

Waterproof electrical component housing – The current laser-cut box was not tested for

any waterproofing standards, as the pedal system was designed for indoor use only. To allow

Johnny to use the electronics in outdoor environments, it should be waterproofed from light rain

and puddles. This corresponds to an IP rating of at least IPX4 - protection from water sprayed

from all directions [MPL (2019)].

Integration with the FES control system – Johnny currently controls his FES parameters

manually to manage the fatigue in his legs while cycling. It may be possible to integrate the

user feedback system as a closed-looped control for the FES stimulator. This appears to be a
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reasonably common strategy in the FES cycling event, and is explicitly permitted within the

Cybathlon regulations [Zurich (2019)], Clause 3.2.2: The FES stimulators may apply closed-loop

control strategies using sensors applied to the pilots or the bike. It is also allowed to manually

trigger the stimulator.

6 Conclusion

The new pedal design and feedback system adequately addresses the issues of the current pedal

setup that were raised by the user. The feedback system provides accurate measurements of

cadence as well as force, and the user interface that goes with it is very intuitive and allows for

use with limited arm and finger mobility. The improved design of the pedal base was largely

a success, as it allows the user to find the ideal foot positioning to deliver the maximum force

through the pedals. In addition, the pedal design adheres to the Cybathlon regulations, as the

electronic components can be completely removed for the race.

Whilst the electrical aspects of the project have met all of the aims set out at the beginning

of the project, the mechanical design was not able to provide the desired stabilisation, and a

significant reduction in weight was not made. However, evaluation and testing has identified

various practical improvements that could be made to address these issues. The possibility of

using of carbon fibre to improve the mechanical rigidity, ergonomics and weight of the pedal

proved particularly promising, but was not possible to implement in this iteration due to time

and resource constraints (the mould that would be needed proved too difficult to manufacture).

It is likely that further iterations of the design with more resources and time would produce a

design that Johnny could use in his training. Furthermore, it is also possible that he may manage

to find a particular configuration that is considerably more comfortable and efficient than any

other. In this case, the adjustability built in to the design may no longer become necessary, and

a bespoke pedal with streamlined ergonomics and minimal weight can be achieved. In this sense,

the adjustable pedal that the team has designed will always be a prelude to a more personalised

product that will truly optimise Johnny’s perfomance in Cybathlon 2020 and beyond.
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Appendix



A Project management

While the design itself was organized by separation of mechanical and electrical components,

the team itself was only loosely organized along these lines. Team members also performed a

variety of other tasks to ensure completion of the project. The following is a summary of the

roles and responsibilities undertaken by each team member:

Nicholas Ustaran-Anderegg

- Project manager

- Organisation of regular team meetings

- Management of individual tasks

- Liaison between team and user

- Programmer for wireless communication by Bluno Nanos and data processing software on

Raspberry Pi

- Developer for user interface

- Manufacture of complete pedal

William Paterson

- Head of manufacture

- Design and manufacture of baseplate and angle brackets

- CAD design, FEA and manufacture of calf support

- Manufacture of bend test fixture and bend testing

Samuel Yeadon

- Procurement manager - budget and acquisitions management

- Liaison with Bioeng orders

- Selection of materials

- Aided in manufacture of various components
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Vivien Alves Passing

- Lead presentation designer

- Co-lead poster designer

- Research and design of calf straps

- Research, design and manufacture of calf support lining

- Proofreading of final report

Nathanael Tan

- Research into biomechanics

- Electronic design of Hall effect circuit

- Design and manufacture of calf straps

- Design and manufacture of peripheral components (Pi mount, electronics caseworks)

- Lead poster designer; creation of layout and visual elements of poster

- Report lead for LATEXformatting and compilation

Mya-Rae Lord

- Lead programmer for the data processing software on the Raspberry Pi

- Wireless communication software development

- User interface development

- Testing of the FSRs

Nestoras Neofytou

- Research on force measuring devices and selection of FSR

- Design and implementation of the FSRs

- Arduino programming
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- Set-up of serial BLE connection

- Overall design and performance testing of the feedback system

Samuel Karet

- Creation of Gantt Chart

- Secondary programmer for wireless protocols

- Secondary programmer for microcontrollers

- Preparatory formatting of data for wireless communication

- Performance testing for software, communication and feedback system

Livia Robic

- Worked on Electronic branch of the design

- Research on circuit design for force measuring devices

- Implementation of FSRs and BLE Bluno Nanos

- Power phase animation

- Secondary Python programmer

Mohammed Shahr Abadi

- Primary development and implementation of Hall effect cadence sensor

- Secondary Arduino programmer

A Gantt chart was also developed to keep track of project deliverables, deadlines and internal

milestones:
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B Risk management

A risk analysis using the Risk Prevention Number (RPN) matrix was performed in order to

identify potential risks to the user before and after mitigation. The most important considera-

tions to the risk were:

1. The user’s physical condition. In addition to his paraplegia, Johnny will also have his

hands and legs strapped into the bike.

2. The typical setting and conditions of use. Johnny primarily trains on a roller at his

residence, but occasionally takes the unit to cycle around his neighbourhood.

3. The pedals will also be used in a competitive setting, where Johnny has reported he will

be using the bike for extended periods of time for technical checks in addition to the actual

races.

4. The specificity of our user, i.e. the fact that Johnny Beer-Timms is the only user the pedal

is designed for.

While points 1, 2, and 3 are considered risk magnifying factors, point 4 is a major mitigating

factor, in that countermeasures can be tailored specifically for him, and warnings and advice on

safe use can largely be relied on to be heeded.

The team therefore continues to recommend an RPN threshold of 75. Note also that the risk

analysis only accounts for failures involving the pedals, and not failure of the bike and FES

system as a whole as these are not within the purview of the project. Numbers in red and green

represent ratings before and after mitigation respectively.
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Assembly Failure & Effect Preventive measures S O D RPN

Calf strap
Over tightening may cause

pressure sores and chafing.

When tightening visually

check straps are not too

tight.

2 8 8 128

2 5 4 40

Insufficient tightening

causing too much movement,

resulting in gashes and

fractures from impact with

the bicycle during motion.

When fastening, check by for

looseness by running finger

along inside of strap.

5 8 8 320

5 4 2 40

Base binding

straps

Over tightening may cause

pressure sores and chafing.

Mark points on ratchet strap

with suitable pressure to

ensure consistent,

appropriate tightening.

2 7 8 112

2 2 1 4

Sharp edges on

calf support

Sharp edges could lead to

pressure sores and cuts.

All edges are filed and the

calf support is lined with

neoprene to ensure all edges

are blunt and padded.

2 7 8 112

2 2 1 4

Electrical circuits

Possibility of mild electrical

shock from water contact

with circuit.

Circuit enclosed in containers

so more resistant to water

and operating at low voltages

so shock will be minimal.

1 2 5 10

- - - -

Electrical components could

overheat, causing burns to

user.

There is no direct contact

between the electrical

components and the user.

4 3 2 24

1 2 2 4
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C Ethics

The first set of considerations pertain to adherence to the Cybathlon regulations. As discussed

in Section 2, Requirements, the team has ensured that the design and capabilities of the

pedal are in agreement with the rule and the spirit of the Cybathlon event.

The second and arguably more pertinent ethical matters pertain to the user himself, Johnny-

Beer Timms. Johnny has been very vocal about his desire to improve and takes his training

very seriously. The team has therefore taken care to manage his expectations with regard to

what is possible and achievable in the time span of the EDP.

Another aspect that needs to be taken into account is confidentiality. Since Johnny will compete

in the Cybathlon against other athletes, information on his performance, training and equipment

should remain confidential within the project group. Hence, the team ensured that Johnny will

not be at a disadvantage when it comes to the racing day because the competitors have gathered

information on his bike or training sessions, for example by giving data to third parties.
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D Bill of materials

Table 4: Bill of materials.

Component Price ()

Aluminium sheet 42.41

Aluminium angle & smaller plate 48.41

Clear Perspex acrylic 7.49

Neoprene foam 23.17

Magnet 5.11

GorillaPod 32.00

(2X) ITB strap 29.70

32 GB SD card 8.40

Nylon strap 5.69

Super slim power bank 10.99

Raspberry Pi 3 34.11

Raspberry Pi 7-inch touch screen 61.72

2pcs ADS1115 16 Byte 4 Channel IIC Analog-to-Digital ADC PGA Converter 6.99

9v batteries 8.99

Velcro strap 10.39

(2X) Bluno Nano Arduino Module with BLE 51.48

Snowboard Bindings 105.00

Force sensitive resistors 104.00

Cycle Pedals 36.49

Use of water-jet to cut aluminium back plate 100.00

TOTAL 732.54
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E Manufacture

Appropriate details regarding manufacture of the final design have been discussed in Section

2.1, Hardware. Further technical drawings & CAD renderings are provided in this section.

Figure 18: Technical drawing of angle bracket for mounting to pedal.
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Figure 19: Technical drawing of base plate with dimensions for manufacture.
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Figure 20: CAD model of calf support designed in SolidWorks.
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Figure 21: Technical drawing of ‘unfolded’ calf support for water-jet cutting.
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F Hall effect and cadence sensor programming

The Hall effect sensor consists of a rectangular p-type semiconductor with a current flowing

through it. When it enters a magnetic field, a force is exerted on the charge carriers in the

semiconductor, deflecting them to the other side. This build up of charge carriers produces a

potential difference. This particular Hall effect sensor is latching, which means it goes HIGH for

the north pole of a magnet and LOW for the south. It is desired, however, for it to produce a

single voltage pulse whenever the north pole passes it. This is known as non-latching behaviour,

and was mas possible in the code by turning the power to the sensor on and off during every

cycle, thereby resetting the sensor.

Figure 22: Demonstration of the Hall effect. [ElectronicsTutorials (2019)]
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G FSR calibration

In order for the FSRs to be used to measure unknown forces, their force-conductance relationship

must first be known. To do this, a series of known forces were applied to the FSR and the

resulting conductance was measured. Plotting the force against conductance produced the

relation shown in Figure ??, which was encoded in the microcontrollers to enable them to

process resistance to force applied to the FSRs.
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Figure 23: Graph of force against conductance for the calibration experiment
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H Microcontroller circuit diagram

Figure 24: The circuit used to connect the sensors to the right pedal. The left pedal is identical,
with the omission of the cadence sensor.
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Figure 25 below represents these connections, and those made with the central processor.

Data connections represented by bold pointed arrows, while data connects are represented by

the rounded, dashed arrows.

two bluno nano units

with bluetooth LE

force-sensitive

resistor

cadence sensor

(right pedal only)

removable

9V battery

raspberry pi 3+
8 GB micro

SD memory card

5V powerbank

(up to 5h

battery life)

screen displaying live data feed
personal

computer

voltage data

serial channel over BLE

HDMI connection

excel data

pi OS

excel data

Figure 25: A flowchart of data and power connections in the feedback system.
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I Microcontroller codes

Listing 1: Left microcontroller code

#define ARRAY_SIZE 3

//The number of values to keep in the running average

#define TIMEOUT 1500

//Max time without input before turning off LEDs

#define FADE_INCREMENT .1

// Controls the fading speed:adjust with trial & error

#include <SoftwareSerial.h>

SoftwareSerial BTSerial (10, 11); // RX | TX

//Pin Declarations (Setup may require editing)

const int fsr1pin=A1;

const int fsr2pin=A2;

const int magnetSensor = A5;

const int ledPin = 14; //pin D11

const int mosSwitch = 9; //pin D6

// Global Variables

float Force1;

float Force2; //final value variable

float Total;

// Cadence counter variables

float times[ARRAY_SIZE ];

// array to hold values for the running average

bool magnetOn = false;

bool prevMagOn = false;

bool primed = false;

bool arrayEmpty = false;

float startTime = millis ();

int rpm = 0;

bool pedaling = false;

//zero values for FSRs

float F_zero1;

float F_zero2;
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// Function Declarations

float f_fsr(int , float);

void updateTimes(float);

int avgArray(float);

void clearTimes ();

void checkFullArray ();

void f_rpm();

void setup () {

// put your setup code here , to run once:

Serial.begin (115200); // start the serial

F_zero1= f_fsr(fsr1pin ,70000);

F_zero2= f_fsr(fsr2pin ,70000);

randomSeed(analogRead(A3));

float Voltage [25];

for(int i = 0; i < 25; i++){

Voltage[i] = 0;

}

pinMode(ledPin , OUTPUT);

digitalWrite(ledPin , HIGH);

}

void loop() {

// put your main code here , to run repeatedly:

Force1 = f_fsr(fsr1pin ,70000) -F_zero1;

Force2 = f_fsr(fsr2pin ,70000) -F_zero2;

Total=Force1+Force2;

// Concatenates start and end strings with data

String fString = String(Total);

String fR_Pi=String (" LFstart "+ fString +" LFend");

Serial.print(fR_Pi);

//f_rpm ();

delay (52);

}

//Force finding function
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float f_fsr(int in_pin ,float R_ref){

int fsrPin = in_pin;

// the FSR and 10K pulldown are connected to a0

int fsrReading;

// the analog reading from the FSR resistor divider

int refVoltage;

/* the analog reading converted to voltage

(voltage drop across reference resistor) */

int fsrVoltage [24]; // voltage drop across fsr

float fsrI;

float fsrResistance;

/* The voltage converted to resistance ,

can be very big so make "long" */

float fsrReference = R_ref; // reference resistor

double fsrConductance;

float fsrForce;

// Finally , the resistance converted to force

float voltageErr;

int i=0;

int useful =0;

float AvgVoltage =0;// fsr avg voltage

for(i=0;i<24;i=i+1);

{

fsrReading=analogRead(fsrPin);

// analog reading from port: in_pin

refVoltage = map(fsrReading , 0, 1023, 0, 5000);

//map the reading to corresponding voltage value

delay (2);

fsrVoltage[i] = 5000 - refVoltage;

// fsrVoltage is in millivolts so 5V = 5000mV
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//error correction

voltageErr = (0.063* fsrVoltage[i]);

fsrVoltage[i] = fsrVoltage[i] - voltageErr;

;

if (fsrVoltage[i]<4750 && fsrVoltage[i]>200)

{

useful=useful +1;

AvgVoltage=AvgVoltage+fsrVoltage[i]/24;

}

}

AvgVoltage =( AvgVoltage *25)/useful;

refVoltage =5000 - AvgVoltage;

/* The voltage = Vcc * R/(R + R_FSR) where

R = 1M2 and Vcc = 5V(from arduino) so

R_FSR = ((Vcc - V) * R) / V where R_fsr is

the resistance of the sensor(infinity to

300 kohms when fully pressed */

fsrI = refVoltage / fsrReference;

/* 1M2 resistor but actual value measured with

multimeter is on input r_ref */

fsrResistance = AvgVoltage / fsrI;

fsrConductance = 1000000/ fsrResistance;

/* conductance is on *10^ -6 scale so multiply by

10^6 to see values

convert to Force

using the relation out of experiment */

if (fsrConductance <1210)

{fsrForce =0;}

else if (1210 <= fsrConductance <=24315)

{fsrForce =4.615* fsrConductance *0.001 -3.963;}
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else if (fsrConductance >24315)

{

fsrForce =8.702* fsrConductance -10.31;

fsrForce=fsrForce /1000;

}

//for testing

/*

Serial.print(" voltage ");

Serial.println(AvgVoltage);

Serial.print(" resistance ");

Serial.println(fsrResistance);

Serial.print(" Conductance ");

Serial.println(fsrConductance);

Serial.print(" Force ");

Serial.println(fsrForce);

Serial.println("--------------------");

*/

return(fsrForce);

}

//add a new value to the array , moving the rest back

one space and removing the oldest

void updateTimes(float newValue)

{

for(int i = 0; i < ARRAY_SIZE -1; i++) {

times[i] = times[i+1];

}

times[ARRAY_SIZE -1] = newValue;

}

// returns an average of the values in the array

int avgArray(float values []) {

int total = 0;

int counted = ARRAY_SIZE;

for(int i = 0; i < ARRAY_SIZE; i++) {

total = total + values[i];
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if(values[i] == 0)

counted --;

}

return(total/counted);

}

//clear the array

void clearTimes () {

for(int i = 0; i < ARRAY_SIZE; i++)

times[i] = 0;

}

//check if the array is full

void checkFullArray () {

arrayEmpty = true;

for(int i = 0; i < ARRAY_SIZE; i++) {

if(times[i] != 0)

arrayEmpty = false;

}

}

void f_rpm (){

// Serial.println ("test");

digitalWrite(mosSwitch ,HIGH);

delay (50); // prepare next data

digitalWrite(mosSwitch ,LOW);

//Read from the hall effect sensor(analog values)

int magnetState = digitalRead(magnetSensor);

// Serial.println(magnetState);

if(magnetState == HIGH) {

magnetOn = false;

}

else {
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magnetOn = true;

}

if(! magnetOn && prevMagOn) {

primed = true;

}

// timeout

if(millis ()-startTime > TIMEOUT) {

clearTimes ();

pedaling = false;

}

//if(magnetOn &&! prevMagOn) {

//if magnet passes sensor once && primed

float currentTime = millis ();

float changeTime = (currentTime - startTime);

// record the time since the last pedal

startTime = millis ();

if(pedaling){

//if there ’s been pedaling since the last timeout

updateTimes(changeTime);

//add the time to the running average array

// Concatenates start and end strings with data

String cadString = String(rpm);

String cadR_Pi=String (" cadStart "+ cadString +" cadEnd ");

// Sends data

Serial.print(cadR_Pi);

}

primed = false;

pedaling = true;

//}
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prevMagOn = magnetOn;

checkFullArray ();

float gap = avgArray(times);

if(arrayEmpty) {

rpm = 0;

}

else{

rpm = 60000/ gap;

//turn millisecond gap value into rpm

}

/* light the lowest red LED when the first pedal

stroke is recorded , since there isn ’t enough data

to calculate rpm */

if(pedaling && rpm == 0){

rpm = 0;

}

return;

}

Listing 2: Right microcontroller code

#define ARRAY_SIZE 3

//The number of values to keep in the running average

#define TIMEOUT 1500

//Max time without input before turning off LEDs

#define FADE_INCREMENT .1

// Controls the fading speed:adjust with trial & error

#include <SoftwareSerial.h>

SoftwareSerial BTSerial (10, 11); // RX | TX

//Pin Declarations (Setup may dictate editing)

const int fsr1pin = A1;

const int fsr2pin = A2;

const int magnetSensor = A5;
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const int ledPin = 14; //pin D11

const int mosSwitch = 9; //pin D6

// Global Variables

float Force1;

float Force2; //final value variable

float Total;

// Cadence counter variables

float times[ARRAY_SIZE ];

// array to hold values for the running average

bool magnetOn = false;

bool prevMagOn = false;

bool primed = false;

bool arrayEmpty = false;

float startTime = millis ();

int rpm = 0;

bool pedaling = false;

//zero values for FSRs

float F_zero1;

float F_zero2;

// Function Declarations

float f_fsr(int , float);

void updateTimes(float);

int avgArray(float);

void clearTimes ();

void checkFullArray ();

void f_rpm();

void setup () {

// put your setup code here , to run once:

Serial.begin (115200); // start the serial

F_zero1= f_fsr(fsr1pin ,70000);

F_zero2= f_fsr(fsr2pin ,70000);

randomSeed(analogRead(A3));

float Voltage [25];
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for(int i = 0; i < 25; i++){

Voltage[i] = 0;

}

pinMode(A5 , INPUT_PULLUP);

pinMode(ledPin , OUTPUT);

digitalWrite(ledPin , HIGH);

}

void loop() {

// put your main code here , to run repeatedly:

Force1 = f_fsr(fsr1pin ,70000) -F_zero1;

Force2 = f_fsr(fsr2pin ,70000) -F_zero2;

Total=Force1+Force2;

// Concatenates start and end strings with data

String fString = String(Total);

String fR_Pi = String (" RFstart "+ fString +" RFend");

Serial.print(fR_Pi);

f_rpm();

delay (2);

}

//Force finding function

float f_fsr(int in_pin ,float R_ref){

int fsrPin = in_pin;

// the FSR and 10K pulldown are connected to a0

int fsrReading;

// the analog reading from the FSR resistor divider

int refVoltage;

/* the analog reading converted to voltage

(voltage drop across reference resistor)*/

int fsrVoltage [24]; // voltage drop across fsr

float fsrI;

float fsrResistance;

/* The voltage converted to resistance , can be very

big so make "long "*/

float fsrReference = R_ref; // reference resistor
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double fsrConductance;

float fsrForce;

// Finally , the resistance converted to force

float voltageErr;

int i=0;

int useful =0;

float AvgVoltage =0;// fsr avg voltage

for(i=0;i<24;i=i+1);

{

fsrReading=analogRead(fsrPin);

// analog reading from port: in_pin

refVoltage = map(fsrReading , 0, 1023, 0, 5000);

//map the reading to the corresponding value

delay (2);

fsrVoltage[i] = 5000 - refVoltage;

// fsrVoltage is in millivolts so 5V = 5000mV

//error correction

voltageErr = (0.063* fsrVoltage[i]);

fsrVoltage[i] = fsrVoltage[i] - voltageErr;

;

if (fsrVoltage[i]<4750 && fsrVoltage[i]>200)

{

useful=useful +1;

AvgVoltage=AvgVoltage+fsrVoltage[i]/24;

}

}

AvgVoltage =( AvgVoltage *25)/useful;

refVoltage =5000 - AvgVoltage;

/* The voltage = Vcc * R / (R + R_FSR) where
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R = 1M2 and Vcc = 5V(fom arduino) so

R_FSR = ((Vcc - V) * R) / V where R_fsr is

the resistance of the sensor(infinity to

300 kohms when fully pressed */

fsrI = refVoltage / fsrReference;

/* 1M2 resistor but actual value measured with

multimeter is on input r_ref */

fsrResistance = AvgVoltage / fsrI;

fsrConductance = 1000000/ fsrResistance;

/* conductance is on *10^ -6 scale so multiply by

10^6 to see values

convert to Force

using the relation out of experiment */

if (fsrConductance <1210)

{fsrForce =0;}

else if (1210 <= fsrConductance <=24315)

{fsrForce =4.615* fsrConductance *0.001 -3.963;}

else if (fsrConductance >24315)

{

fsrForce =8.702* fsrConductance -10.31;

fsrForce=fsrForce /1000;

}

//for testing

/*

Serial.print(" voltage ");

Serial.println(AvgVoltage);

Serial.print(" resistance ");

Serial.println(fsrResistance);

Serial.print(" Conductance ");

Serial.println(fsrConductance);

Serial.print(" Force ");
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Serial.println(fsrForce);

Serial.println("--------------------");

*/ //code for testing functions

return(fsrForce);

}

/* add a new value to the array , moving the rest back

one space and removing the oldest */

void updateTimes(float newValue)

{

for(int i = 0; i < ARRAY_SIZE -1; i++) {

times[i] = times[i+1];

}

times[ARRAY_SIZE -1] = newValue;

}

// returns an average of the values in the array

int avgArray(float values []) {

int total = 0;

int counted = ARRAY_SIZE;

for(int i = 0; i < ARRAY_SIZE; i++) {

total = total + values[i];

if(values[i] == 0)

counted --;

}

return(total/counted);

}

//clear the array

void clearTimes () {

for(int i = 0; i < ARRAY_SIZE; i++)

times[i] = 0;

}

//check if the array is full

void checkFullArray () {

arrayEmpty = true;

for(int i = 0; i < ARRAY_SIZE; i++) {
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if(times[i] != 0)

arrayEmpty = false;

}

}

void f_rpm (){

// Serial.println ("test");

pinMode(A5 , OUTPUT);

digitalWrite(mosSwitch ,LOW);

digitalWrite(A5 , LOW);

delay (50); // prepare next data

pinMode(A5 , INPUT_PULLUP);

digitalWrite(mosSwitch ,HIGH);

//Read from the hall effect sensor(analog values)

int magnetState = digitalRead(magnetSensor);

// Serial.println(magnetState);

if(magnetState == HIGH) {

magnetOn = false;

}

else {

magnetOn = true;

}

if(! magnetOn && prevMagOn) {

primed = true;

}

// timeout

if(millis ()-startTime > TIMEOUT) {

clearTimes ();

pedaling = false;
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}

float currentTime = millis ();

float changeTime = (currentTime - startTime);

// record the time since the last pedal

startTime = millis ();

if(pedaling){

// check pedaling since the last timeout

updateTimes(changeTime);

//add the time to the running average array

// Concatenates start/end strings with data

String cadString = String(rpm);

String cadR_Pi=String (" CADstart "+ cadString +" CADend ");

// sends data

Serial.print(cadR_Pi);

}

primed = false;

pedaling = true;

//}

prevMagOn = magnetOn;

checkFullArray ();

float gap = avgArray(times);

if(arrayEmpty) {

rpm = 0;

}

else{

rpm = 60000/ gap;

//turn millisecond gap value into rpm

}
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/*light the lowest red LED when the first

pedal stroke is recorded , since there isn ’t

enough data to calculate rpm*/

if(pedaling && rpm == 0){

rpm = 0;

}

return;

}

Listing 3: Hall effect sensor testing code

#define ARRAY_SIZE 5

//The number of values to keep in the running average

#define TIMEOUT 1500

//Max time without input before turning off LEDs

#define FADE_INCREMENT .1

// Controls the fading speed:adjust with trial & error

#include <SoftwareSerial.h>

SoftwareSerial BTSerial (10, 11); // RX | TX

/** PORT SETUP **/

const int magnetSensor = A5;

const int ledPin = 11;

const int mosSwitch = 13;

bool magnetOn = false;

bool prevMagOn = false;

bool primed = false;

bool arrayEmpty = false;

float times[ARRAY_SIZE ];

//array to hold values for the running average

float startTime = millis ();

int rpm = 0;

bool pedaling = false;

/* add a new value to the array , moving the rest back

one space and removing the oldest */

void updateTimes(float newValue)
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{

for(int i = 0; i < ARRAY_SIZE -1; i++) {

times[i] = times[i+1];

}

times[ARRAY_SIZE -1] = newValue;

}

// returns an average of the values in the array

int avgArray(float values []) {

int total = 0;

int counted = ARRAY_SIZE;

for(int i = 0; i < ARRAY_SIZE; i++) {

total = total + values[i];

if(values[i] == 0)

counted --;

}

return(total/counted);

}

//for debugging

void printValues () {

for(int i = 0; i < ARRAY_SIZE - 1; i++) {

Serial.print(times[i]);

Serial.print(", ");

}

Serial.println(times[ARRAY_SIZE -1]);

}

//clear the array

void clearTimes () {

for(int i = 0; i < ARRAY_SIZE; i++)

times[i] = 0;

}

//check if the array is full

void checkFullArray () {

arrayEmpty = true;

for(int i = 0; i < ARRAY_SIZE; i++) {
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if(times[i] != 0)

arrayEmpty = false;

}

}

void setup () {

Serial.begin (9600);

BTSerial.begin (9600);

pinMode(A5 , INPUT_PULLUP);

}

void loop() {

// BTSerial.write ("test");

// BTSerial.println ("test");

// Serial.println ("test");

pinMode(A5 , OUTPUT);

digitalWrite(mosSwitch ,LOW);

digitalWrite(A5 , LOW);

delay (50); // prepare next data

pinMode(A5 , INPUT_PULLUP);

digitalWrite(mosSwitch ,HIGH);

//Read from the hall effect sensor(analog values)

int magnetState = digitalRead(magnetSensor);

Serial.println(magnetState);

if(magnetState == HIGH) {

magnetOn = false;

}

else {

magnetOn = true;

}

if(! magnetOn && prevMagOn) {

primed = true;

}

// timeout0

if(millis ()-startTime > TIMEOUT) {
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clearTimes ();

pedaling = false;

}

if(magnetOn &&! prevMagOn) {

//if magnet passes sensor once && primed

float currentTime = millis ();

float changeTime = (currentTime - startTime);

// record the time since the last pedal

startTime = millis ();

if(pedaling)

//if there ’s been pedaling since the last timeout

updateTimes(changeTime);

//add the time to the running average array

primed = false;

pedaling = true;

}

prevMagOn = magnetOn;

checkFullArray ();

float gap = avgArray(times);

if(arrayEmpty) {

rpm = 0;

}

else

rpm = 60000/ gap;

//turn millisecond gap value into rpm

/* light the lowest red LED when the first pedal

stroke is recorded , since there isn ’t enough data

to calculate rpm */

if(pedaling && rpm == 0)

rpm = 0;

// Serial.println(rpm);

}
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J Python codes

Listing 4: Main Python code

from kivy.app import App

from kivy.graphics import Color , Rectangle , Ellipse

from kivy.uix.boxlayout import BoxLayout

from kivy.uix.floatlayout import FloatLayout

from kivy.uix.image import AsyncImage

from kivy.uix.button import Button

from kivy.uix.label import Label

from kivy.core.text import Label as CoreLabel

from kivy.uix.widget import Widget

from kivy.properties import ListProperty

from kivy.core.window import Window

from kivy.animation import Animation

import multiprocessing as mp

from multiprocessing import Process

import binascii

import struct

import time

from bluepy import btle

from bluepy.btle import UUID

import xlsxwriter

from xlsxwriter import*

import os.path

import string

import tkinter as tk

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import animation

import math

import time

import random
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#Global variables

dev_R = btle.Peripheral(None) #Right foot arduino

dev_L = btle.Peripheral(None) #left foot arduino

bt_power = 0

#Rows in spread sheet1 for data from right foot

r_1R = 1

#Rows in spread sheet1 for data from left foot

r_1L = 1

#Rows in spread sheet2

r_2 = 1

#process variables

p1 = None

p2 = None

#Worksheet

wb = None

#Sheets

sheet1 = None

sheet2 = None

def disconnect ():

global dev_R

global dev_L

dev_R.disconnect ()

dev_L.disconnect ()

return

def make_workbook ():

save_path = ’/media/pi/LEXAR ’

#Variable used to name file number

n=1

#Searches for exixting file of same name
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match = os.path.exists ("/ media/pi/LEXAR/Power_phase Session "

+ str(n)+". xlsx")

while match==True:

n=n+1

match = os.path.exists ("/ media/pi/LEXAR/Power_phase

Session " + str(n)+". xlsx")

#Names File

name_of_file = "Power_phase Session " + str(n)

completeName = os.path.join(save_path , name_of_file +". xlsx")

# Workbook is created

global wb

wb = xlsxwriter.Workbook(completeName)

return

def display_data(a, data):

start.refresh_text(a, data)

def data_processing ():

global bt_power

bt_power = 1

def right():

global dev_R

dev_R.connect ("F4:5E:AB:B0:8E:CC", )

global bt_power

class MyDelegate(btle.DefaultDelegate):

def __init__(self):

btle.DefaultDelegate.__init__(self)
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def handleNotification(self , cHandle , data):

data = str(data)

if (data [0:9] == "CADstart ")

data_c = data

global sheet

global r_2

sheet2.write(r_2 , 1, data_c)

else

data = data [9:13]

print ("A notification was received from right

: " + str(data))

data = int(data)

global sheet1

global r_1R

sheet1.write(r_1R , 0, data)

a = 0

display_data(a, data)

r_1R = r_1R + 1

r_2 = r_2 +1

dev_R.setDelegate( MyDelegate () )

svc_R = dev_R.getServiceByUUID( 0xdfb0 )

ch_R = svc_R.getCharacteristics ()[0]

val_R = ch_R.valHandle

print(val_R)

dev_R.writeCharacteristic(ch_R.valHandle +1, b"\x02\x00")
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while True:

if (bt_power == 0):

break

if dev_R.waitForNotifications (1.0):

# handleNotification () was called

continue

print (" Waiting ...")

return

def left():

global dev_L

dev_L.connect ("F4:5E:AB:B1:14:FB")

global bt_power

class MyDelegate(btle.DefaultDelegate):

def __init__(self):

btle.DefaultDelegate.__init__(self)

def handleNotification(self , cHandle , data):

data = str(data)

data = data [9:13]

print ("A notification was received from left:" +

data)

data = int(data)

a = 1

global r_1L

global sheet1

sheet1.write(r_1L , 2, data)

display_data(a, data)

r_1L = r_1L +1
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dev_L.setDelegate( MyDelegate () )

svc_L = dev_L.getServiceByUUID( 0xdfb0 )

ch_L = svc_L.getCharacteristics ()[0]

val_L = ch_L.valHandle

print(val_L)

dev_L.writeCharacteristic(ch_L.valHandle +1, b"\x02\x00")

while True:

if (bt_power == 0):

break

if dev_L.waitForNotifications (1.0):

# handleNotification () was called

continue

print (" Waiting ...")

return

if __name__ == ’__main__ ’:

global p1

p1 = Process(target = right)

p1.start ()

global p2

p2 = Process(target = left)

p2.start ()

class start(FloatLayout):

def __init__(self , ** kwargs):

# make sure we aren ’t overriding any important

functionality
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#Window.size = (800 , 480) #Sets window sixe to size of

display

#Window.fullscreen = True

super(start , self).__init__ (** kwargs)

self.add_widget(

AsyncImage(

source ="/ home/pi/carbon.jpeg",

size_hint= (1.5, 1.5),

pos_hint={’center_x ’:.5, ’center_y ’:.5}))

self.startbtn = Button(

text=" START",

background_color =(0,1,0,1),

size_hint =(.3, .3),

pos_hint={’center_x ’: .5, ’center_y ’: .7})

self.startbtn.bind(on_press=self.btn_pressedstart)

self.add_widget(self.startbtn)

self.quitbtn = Button(

text="SAVE AND QUIT",

background_color =(1,0,0,1),

size_hint =(.2, .2),

pos_hint={’center_x ’: .5, ’center_y ’: .3})

self.quitbtn.bind(on_press=self.btn_pressedquit)

self.add_widget(self.quitbtn)

with self.canvas.before:

Color(0, 0, 0, 0) # green; colors range from 0-1

instead of 0-255

self.rect = Rectangle(size=self.size , pos=self.pos)

self.bind(size=self._update_rect , pos=self._update_rect)

def _update_rect(self , instance , value):
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self.rect.pos = instance.pos

self.rect.size = instance.size

def btn_pressedstart(self , instance):

self.remove_widget(self.startbtn)

cadence = Button(

text=’Cadence ’,

size_hint =(.2, .1),

pos_hint={’center_x ’: .5, ’center_y ’: .7})

self.add_widget(cadence)

right = Button(

text=’Right Pedal ’,

size_hint =(.2, .1),

pos_hint={’center_x ’: .8, ’center_y ’: .9})

self.add_widget(right)

left = Button(

text=’Left Pedal ’,

size_hint =(.2, .1),

pos_hint={’center_x ’: .2, ’center_y ’: .9})

self.add_widget(left)

self.draw()

make_workbook ()

global wb

global sheet1

sheet1 = wb.add_worksheet(’Power Phase ’)

global sheet2

sheet2 = wb.add_worksheet(’Cadence ’)

#Adds headers for different values

sheet1.write(0, 0, ’Right Power ’)

sheet1.write(0, 1, ’Right Crank Angle ’)

sheet1.write(0, 2, ’Left Power ’)

sheet1.write(0, 3, ’Left Crank Angle ’)

sheet2.write(0, 0, ’Time ’)

sheet2.write(0, 1, ’Cadence ’)
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print(’Hello ’)

data_processing ()

return

def draw(self):

with self.canvas:

# Draw right circle

label_r = CoreLabel(text ="0 N", font_size =40)

label_r.refresh ()

Color(0, 0, 0)

Ellipse(pos =(570 ,300), size =(150 ,150))

Color(1, 1, 1)

Rectangle(texture=label_r.texture , pos =(620 ,335) ,

size =(70, 70))

# Draw left circle

label_l = CoreLabel(text ="0 N", font_size =40)

label_l.refresh ()

Color(0, 0, 0)

Ellipse(pos =(90 ,300), size =(150 ,150))

Color(1, 1, 1)

Rectangle(texture=label_l.texture , pos =(140 ,335) ,

size =(70, 70))

#Draw cadence rectangle

label_c = CoreLabel(text ="0 rpm", font_size =40)

label_c.refresh ()

Color(0, 0, 0)

Rectangle(pos =(325 ,275) , size =(150 , 75))

Color(1, 1, 1)

Rectangle(texture=label_c.texture , pos =(325 ,275) ,

size =(150, 70))
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def btn_pressedquit(self , instance):

global wb

wb.close ()

global bt_power

bt_power = 0

global p1

p1.terminate ()

global p2

p2.terminate ()

disconnect ()

print("Bye")

self.add_widget(self.startbtn)

MainApp.get_running_app ().stop()

Window.close()

class MainApp(App):

def build(self):

root = start()

return root

if __name__ == ’__main__ ’:

MainApp ().run()

Listing 5: Initial Bluetooth test code

from bluepy import btle

print(" Connecting ...")

dev = btle.Peripheral ("F4:5E:AB:B0:8E:CC")

print(" Services ...")

for svc in dev.services:

print (str(svc))
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print(" Characteristics ..")

for char in dev.getCharacteristics ():

print(str(char))

#data = char.read()

#print (str(ord(data)))

Listing 6: Excel Creation Test Code

import xlsxwriter

from xlsxwriter import*

import os.path

import string

import tkinter as tk

import numpy as np

import matplotlib.pyplot as plt

def excel():

#def returnCadence (num):

save_path = ’D:/EDP Programming ’

#Variable used to name file number

n=1

#Searches for exixting file of same name

match = os.path.exists ("D:/EDP Programming/Cycling Session "

+ str(n)+". xlsx")

while match==True:

n=n+1

match = os.path.exists ("D:/EDP Programming/Cycling

Session " + str(n)+". xlsx")

#Names File

name_of_file = "Cycling Session " + str(n)

completeName = os.path.join(save_path , name_of_file +". xlsx")

# Workbook is created

wb = xlsxwriter.Workbook(completeName)

# add_sheet is used to create sheet.

sheet1 = wb.add_worksheet(’Cycling_Data ’)
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#sheet1.add_table(’A1:B12 ’)

sheet1.write(0, 0, ’Time (s)’)

sheet1.write(0, 1, ’Cadence (rpm)’)

sheet1.write(0, 2, ’Power (W)’)

#take update cadence and power values initially

c=5 #cadence value

p=10 #power value

i=1 #time iterator

#write values in sheet

while c!=0:

sheet1.write(i, 0, i)

sheet1.write(i, 1, c)

sheet1.write(i, 2, p)

i=i+1

c=0

#create loop here to update cadence and power

#cadence graph

cadenceChart = wb.add_chart({’type ’: ’line ’})

sheet1.insert_chart(’E2 ’, cadenceChart)

cadenceChart.add_series ({

’categories ’: ’=Cycling_Data!$A$2:$A$11 ’,

’values ’: ’=Cycling_Data!$B$2:$B$11 ’,

’line ’: {’color ’: ’blue ’},

})

cadenceChart.set_title ({ ’name ’: ’Cadence (time) ’})

cadenceChart.set_x_axis ({’name ’: ’Time (s) ’})

cadenceChart.set_y_axis ({’name ’: ’Cadence (rpm) ’})

cadenceChart.set_legend ({’none ’: True})
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#power graph

powerChart = wb.add_chart ({’type ’: ’line ’})

sheet1.insert_chart(’M2 ’, powerChart)

powerChart.add_series ({

’categories ’: ’=Cycling_Data!$A$2:$A$11 ’,

’values ’: ’=Cycling_Data!$C$2:$C$11 ’,

’line ’: {’color ’: ’red ’},

})

powerChart.set_title ({ ’name ’: ’Power (time) ’})

powerChart.set_x_axis ({’name ’: ’Time (s) ’})

powerChart.set_y_axis ({’name ’: ’Power (W) ’})

powerChart.set_legend ({’none ’: True})

wb.close ()

#returnCadence (time)

# return cadence

class Application(tk.Frame):

def __init__(self , master=None):

super().__init__(master)

self.master = master

self.pack()

self.create_widgets ()

def create_widgets(self):

self.hi_there = tk.Button(self)

self.hi_there ["text"] = "START"

self.hi_there [" command "] = self.say_hi

self.hi_there.pack(side="top")

self.quit = tk.Button(self , text="QUIT AND SAVE", fg="red

",

command=self.master.destroy)

self.quit.pack(side=" bottom ")

def say_hi(self):

V = np.array ([[1,1],[-2,2],[4,-7]])

origin = [0], [0] # origin point
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fig = plt.figure ()

plt.quiver (*origin , V[:,0], V[:,1], color=[’r’], scale

=21)

plt.show()

excel()

root = tk.Tk()

app = Application(master=root)

app.mainloop ()

Listing 7: Simultaneous Bluetooth test code

import multiprocessing as mp

from multiprocessing import Process

import binascii

import struct

import time

from bluepy import btle

from bluepy.btle import UUID

def right():

dev_R = btle.Peripheral ("F4:5E:AB:B0:8E:CC")

class MyDelegate(btle.DefaultDelegate):

def __init__(self):

btle.DefaultDelegate.__init__(self)

def handleNotification(self , cHandle , data):

print (" Received Notification: %s" %data)

dev_R.setDelegate( MyDelegate () )

svc_R = dev_R.getServiceByUUID( 0xdfb0 )

ch_R = svc_R.getCharacteristics ()[0]

val_R = ch_R.valHandle

print(val_R)

dev_R.writeCharacteristic(ch_R.valHandle +1, b"\x02\x00")

while True:
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if dev_R.waitForNotifications (1.0):

# handleNotification () was called

continue

print(" Waiting ...")

def left():

dev_L = btle.Peripheral ("F4:5E:AB:B1:14:FB")

class MyDelegate(btle.DefaultDelegate):

def __init__(self):

btle.DefaultDelegate.__init__(self)

def handleNotification(self , cHandle , data):

print (" Received Notification: %s" %data)

#add_to_graph(data)

dev_L.setDelegate( MyDelegate () )

svc_L = dev_L.getServiceByUUID( 0xdfb0 )

ch_L = svc_L.getCharacteristics ()[0]

val_L = ch_L.valHandle

print(val_L)

dev_L.writeCharacteristic(ch_L.valHandle +1, b"\x02\x00")

while True:

if dev_L.waitForNotifications (1.0):

# handleNotification () was called

continue

print(" Waiting ...")

if __name__ == ’__main__ ’:

p1 = Process(target = right)

p1.start ()

p2 = Process(target = left)
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p2.start ()
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